Thales' theorem

If parallel lines a and b intersect line p in real points A and B, and line in A_{1} and B_{1}, and if S is a common point for lines p and q, then applies:

$$
\frac{A A_{1}}{B B_{1}}=\frac{S A}{S B}=\frac{S A_{1}}{S B_{1}}
$$

In picture this would look like this:

For Thales' theorem, we can have an important conclusion:
If two arbitrary lines p and q cuts series of parallel lines, so that the segments are equal among themselves, then the segments on the second line are mutually equal.

picture 1.

picture 2.

On picture 1. we have a series of parallel lines which make equal segments on $S p, A B=B C=C D=D E$. Then the segments , by Thales' theorem, on $S q$ are also equal : $A_{1} B_{1}=B_{1} C_{1}=C_{1} D_{1}=D_{1} E_{1} \quad$ (picture 2.)

This conclusion is directly applicable in long division in equal parts.

Example 1. Given along $\mathbf{A B}$ divided into five equal parts.

Solution

We take an arbitrary along AB :
A
B

From point A draw line $A p$ (on either side). On it we draw five equal along.

End of last along (bold in the picture) connect with point B with line .

Parallel with this line we draw 4 more lines.

Given along Ab is divided on 5 equal parts!

A similar procedure would be if we have to divid along in $3,4,6,7 \ldots$ parts.

Example 2. Given along MN divided in the ratio 5:2.

Solution:

When we seek to divide along in a scale, we first gathered together all the parts :5+2=7. So, we share along at 7 equal parts:

Therefore, we divided along MN to 7 equal parts. Just count five and put the point, for example, S.
We are sure that: $M S: S N=5: 2$

Solution

Here we will use Thales' theorem. Here it is important that x in the proportion, is in 4-th place. As we see, in this case it is satisfied.

First, take three arbitrary long:

Draw an arbitrary convex (preferably sharp) angle pOq and apply the following order:

i) $x=a \cdot b$
ii) $\quad x=\frac{a}{b}$
iii) $\quad x=a^{2}$

Solution

i) $x=a \cdot b$

From here, we have to make a proportion, but so that x is in the last place
$x=a \cdot b$
$1 \cdot x=a \cdot b$
$1: a=b: x$

ii) $\quad x=\frac{a}{b}$

We have to make a proportion, but so that x is in the last place
$x=\frac{a}{b}$
$\frac{x}{1}=\frac{a}{b} \rightarrow x \cdot b=1 \cdot a \rightarrow b: a=1: x$

iii) $\quad x=a^{2}$

$$
\begin{aligned}
& x=a^{2} \\
& 1 \cdot x=a \cdot a \\
& 1: a=a: x
\end{aligned}
$$

Example 5.

On the line we have points A and B. Determine the point P on along $A B$ which is shared in the ratio of the two given longer \boldsymbol{m} and \boldsymbol{n}.

Solution

First choose an arbitrary longs m and n.

Draw a line with points A and B.

Draw line $A a$ and m.

Next pull parallel with Aa through the point B (picture 1.)

On this line we bring n (from point B) on both sides. . We have therefore points N and N_{1}. (picture 2.)

Merge points N and N_{1} with point M and we get section with line AB , that is the points P and P_{1}.
So we get two solutions and both are good, but it says that a mathematical point P divides AB along the inner and point P_{1} external division.

